Semester VIII [Fourth year] Branch/Course: Electrical Engineering

Sl. No.	Course Code	Course Title	Hours per week		Total contact hours	Credits	
			Lecture	Tutorial	Practical		
1	PEC-EE05	Program Elective -5	3	0	0	3	3
2	OEC-EE05	OE-5	3	0	0	3	3
3	OEC-EE06	OE-6	3	0	0	3	3
4	PROJ-EE05	Project Stage-II	0	0	16	16	8
					Total	25	17

PEC-EE04	Electrical and Hybrid Vehicles	3L:0T:0P	3 credits

At the end of this course, students will demonstrate the ability to

- Understand the models to describe hybrid vehicles and their performance.
- Understand the different possible ways of energy storage.
- Understand the different strategies related to energy storage systems.

Module 1: Introduction (10 hours)

Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drivetrain topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Module 3: Electric Trains (10 hours)

Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Module 4: Energy Storage (10 hours)

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Module 5: Energy Management Strategies (9 hours)

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

Text / References:

- 1. C. Mi, M. A. Masrur and D. W.Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 3. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel CellVehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 4. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

PEC-EE05	Electrical Machine Design	3L:0T:0P	3 credits
120 2200	Electrical machine Design		o ci cuito

At the end of this course, students will demonstrate the ability to

- Understand the construction and performance characteristics of electrical machines.
- Understand the various factors which influence the design: electrical, magnetic and thermal loading of electrical machines
- Understand the principles of electrical machine design and carry out a basic design of an acmachine.
- Use software tools to do design calculations.

Module 1: Introduction

Major considerations in electrical machine design, electrical engineering materials, space factor, choice of specific electrical and magnetic loadings, thermal considerations, heat flow, temperature rise, rating of machines.

Module 2: Transformers

Sizing of a transformer, main dimensions, kVA output for single- and three-phase transformers, window space factor, overall dimensions, operating characteristics, regulation, no load current, temperature rise in transformers, design of cooling tank, methods for cooling of transformers.

Module 3: Induction Motors

Sizing of an induction motor, main dimensions, length of air gap, rules for selecting rotor slots of squirrel cage machines, design of rotor bars & slots, design of end rings, design of wound rotor, magnetic leakage calculations, leakage reactance of polyphase machines, magnetizing current, short circuit current, circle diagram, operating characteristics.

Module 4: Synchronous Machines

Sizing of a synchronous machine, main dimensions, design of salient pole machines, short circuit ratio, shape of pole face, armature design, armature parameters, estimation of air gap length, design of rotor, design of damper winding, determination of full load field mmf, design of field winding, design of turbo alternators, rotor design.

Module 5: Computer aided Design (CAD):

Limitations (assumptions) of traditional designs, need for CAD analysis, synthesis and hybrid methods, design optimization methods, variables, constraints and objective function, problem formulation. Introduction to FEM based machine design. Introduction to complex structures of modern machines-PMSMs, BLDCs, SRM and claw-pole machines.

Text / References:

- 1. A. K. Sawhney, "A Course in Electrical Machine Design", Dhanpat Rai and Sons, 1970.
- 2. M.G. Say, "Theory & Performance & Design of A.C. Machines", ELBS London.
- 3. S. K. Sen, "Principles of Electrical Machine Design with computer programmes", Oxford and IBH Publishing, 2006.
- 4. K. L. Narang, "A Text Book of Electrical Engineering Drawings", SatyaPrakashan, 1969.
- 5. A. Shanmugasundaram, G. Gangadharan and R. Palani, "Electrical Machine Design Data Book", New Age International, 1979.
- 6. K. M. V. Murthy, "Computer Aided Design of Electrical Machines", B.S. Publications, 2008.
- 7. Electrical machines and equipment design exercise examples using Ansoft's Maxwell 2D machine design package.

PEC-EE06	HVDC Transmission Systems	3L:0T:0P	3 credits
	Ũ		

At the end of this course, students will demonstrate the ability to

- Understand the advantages of dc transmission over ac transmission.
- Understand the operation of Line Commutated Converters and Voltage Source Converters.
- Understand the control strategies used in HVdc transmission system.
- Understand the improvement of power system stability using an HVdc system.

Module 1: dc Transmission Technology (4 hours)

Comparison of AC and dc Transmission (Economics, Technical Performance and Reliability). Application of DC Transmission. Types of HVdc Systems. Components of a HVdc system. Line Commutated Converter and Voltage Source Converter based systems.

Module 2: Analysis of Line Commutated and Voltage Source Converters (10 hours)

Line Commutated Converters (LCCs): Six pulse converter, Analysis neglecting commutation overlap, harmonics, Twelve Pulse Converters. Inverter Operation. Effect of Commutation Overlap.

Expressions for average dc voltage, AC current and reactive power absorbed by the converters. Effect of Commutation Failure, Misfire and Current Extinction in LCC links.

Voltage Source Converters (VSCs): Two and Three-level VSCs. PWM schemes: Selective Harmonic Elimination, Sinusoidal Pulse Width Modulation. Analysis of a six pulse converter. Equations in the rotating frame. Real and Reactive power control using a VSC.

Module 3: Control of HVdc Converters: (10 hours)

Principles of Link Control in a LCCHVdc system. Control Hierarchy, Firing Angle Controls – Phase-Locked Loop, Current and Extinction Angle Control, Starting and Stopping of a Link. Higher level Controllers Power control, Frequency Control, Stability Controllers. Reactive Power Control. Principles of Link Control in a VSC HVdc system: Power flow and dc Voltage Control. Reactive Power Control/AC voltage regulation.

Module 3: Components of HVdc systems: (8 hours)

Smoothing Reactors, Reactive Power Sources and Filters in LCC HVdc systems DC line: Corona Effects. Insulators, Transient Over-voltages. dc line faults in LCC systems. dc line faults in VSC systems. dc breakers. Monopolar Operation. Ground Electrodes.

Module 4:Stability Enhancement using HVdc Control (4 hours)

Basic Concepts: Power System Angular, Voltage and Frequency Stability. Power Modulation: basic principles – synchronous and asynchronous links. Voltage Stability Problem in AC/dc systems.

Module 5: MTdc Links (4 hours)

Multi-Terminal and Multi-Infeed Systems. Series and Parallel MTdc systems using LCCs. MTdc systems using VSCs. Modern Trends in HVdcTechnology. Introduction to Modular Multi-level Converters.

Text/References:

- 1. K. R. Padiyar, "HVDC Power Transmission Systems", New Age International Publishers, 2011.
- 2. J. Arrillaga, "High Voltage Direct Current Transmission", Peter Peregrinus Ltd., 1983.
- 3. E. W. Kimbark, "Direct Current Transmission", Vol.1, Wiley-Interscience, 1971.

PEC-EE07 Power Quality and FACTS 3L:0T:0P3 credits	PEC-EE07	Power Quality and FACTS	3L:0T:0P	3 credits
--	----------	--------------------------------	----------	-----------

At the end of this course, students will demonstrate the ability to

- Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation.
- Understand the working principles of FACTS devices and their operating characteristics.
- Understand the basic concepts of power quality.
- Understand the working principles of devices to improve power quality.

Module 1: Transmission Lines and Series/Shunt Reactive Power Compensation (4 hours)

Basics of AC Transmission. Analysis of uncompensated AC transmission lines. Passive Reactive Power Compensation. Shunt and series compensation at the mid-point of an AC line. Comparison of Series and Shunt Compensation.

Module 2: Thyristor-based Flexible AC Transmission Controllers (FACTS) (6 hours)

Description and Characteristics of Thyristor-based FACTS devices: Static VAR Compensator (SVC), Thyristor Controlled Series Capacitor (TCSC), Thyristor Controlled Braking Resistor and Single Pole Single Throw (SPST) Switch. Configurations/Modes of Operation, Harmonics and control of SVC and TCSC. Fault Current Limiter.

Module 3: Voltage Source Converter based (FACTS) controllers (8 hours)

Voltage Source Converters (VSC): Six Pulse VSC, Multi-pulse and Multi-level Converters, Pulse-Width Modulation for VSCs. Selective Harmonic Elimination, Sinusoidal PWM and Space Vector Modulation. STATCOM: Principle of Operation, Reactive Power Control: Type I and Type II controllers, Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC): Principle of Operation and Control. Working principle of Interphase Power Flow Controller. Other Devices: GTO Controlled Series Compensator. Fault Current Limiter.

Module 4: Application of FACTS (4 hours)

Application of FACTS devices for power-flow control and stability improvement. Simulation example of power swing damping in a single-machine infinite bus system using a TCSC. Simulation example of voltage regulation of transmission mid-point voltage using a STATCOM.

Module 5: Power Quality Problems in Distribution Systems (4hours)

Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-form Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement. Tolerance of Equipment: CBEMA curve.

Module 6: DSTATCOM (8 hours)

Reactive Power Compensation, Harmonics and Unbalance mitigation in Distribution Systems using DSTATCOM and Shunt Active Filters. Synchronous Reference Frame Extraction of Reference Currents. Current Control Techniques in for DSTATCOM.

Module 6: Dynamic Voltage Restorer and Unified Power Quality Conditioner (6 hours)

Voltage Sag/Swell mitigation: Dynamic Voltage Restorer – Working Principle and Control Strategies. Series Active Filtering. Unified Power Quality Conditioner (UPQC): Working Principle. Capabilities and Control Strategies.

Text/References

- 1. N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technology of FACTS Systems", Wiley-IEEE Press, 1999.
- 2. K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd. 2007.
- 3. T. J. E.Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, New York, 1983.
- 4. R. C. Dugan, "Electrical Power Systems Quality", McGraw Hill Education, 2012.
- 5. G. T. Heydt, "Electric Power Quality", Stars in a Circle Publications, 1991

PEC-EE11	Power System Dynamics and Control	3L:0T:0P	3 credits
----------	-----------------------------------	----------	-----------

At the end of this course, students will demonstrate the ability to

- Understand the problem of power system stability and its impact on the system.
- Analyse linear dynamical systems and use of numerical integration methods.
- Model different power system components for the study of stability.
- Understand the methods to improve stability.

Module 1: Introduction to Power System Operations (3 hours)

Introduction to power system stability. Power System Operations and Control. Stability problems in Power System. Impact on Power System Operations and control.

Module 2 : Analysis of Linear Dynamical System and Numerical Methods (5 hours)

Analysis of dynamical System, Concept of Equilibrium, Small and Large Disturbance Stability. Modal Analysis of Linear System. Analysisusing Numerical Integration Techniques. Issues in Modeling: Slow and Fast Transients, Stiff System.

Module 3 : Modeling of Synchronous Machines and Associated Controllers (12 hours) Modeling of synchronous machine: Physical Characteristics. Rotor position dependent model. D-Q Transformation. Model with Standard Parameters. Steady State Analysis of Synchronous Machine. Short Circuit Transient Analysis of a Synchronous Machine. Synchronization of Synchronous Machine to an Infinite Bus. Modeling of Excitation and Prime Mover Systems. Physical Characteristics and Models. Excitation System Control. Automatic Voltage Regulator. Prime Mover Control Systems. Speed Governors.

Module 4 : Modeling of other Power System Components (10 hours)

Modeling of Transmission Lines and Loads. Transmission Line Physical Characteristics. Transmission Line Modeling. Load Models - induction machine model. Frequency and Voltage Dependence of Loads. Other Subsystems – HVDC and FACTS controllers, Wind Energy Systems.

Module 5 : Stability Analysis (11 hours)

Angular stability analysis in Single Machine Infinite Bus System. Angular Stability in multi-machine systems – Intra-plant, Local and Inter-area modes. Frequency Stability: Centre of Inertia Motion. Load Sharing: Governordroop. Single Machine Load Bus System: Voltage Stability. Introduction to Torsional Oscillations and the SSR phenomenon. Stability Analysis Tools:Transient Stability Programs, Small Signal Analysis Programs.

Module 6 : Enhancing System Stability (4 hours)

Planning Measures. Stabilizing Controllers (Power System Stabilizers). Operational Measures-Preventive Control. Emergency Control.

Text/Reference Books

- 1. K.R. Padiyar, "Power System Dynamics, Stability and Control", B. S. Publications, 2002.
- 2. P. Kundur, "Power System Stability and Control", McGraw Hill, 1995.
- 3. P. Sauer and M. A. Pai, "Power System Dynamics and Stability", Prentice Hall, 1997.

PEC-EE17 Control Systems Design	3L:0T:0P	3 credits
---------------------------------	----------	-----------

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Understand various design specifications.
- Design controllers to satisfy the desired design specifications using simple controller structures (P, PI, PID, compensators).
- Design controllers using the state-space approach.

Module 1: Design Specifications (6 hours)

Introduction to design problem and philosophy. Introduction to time domain and frequency domain design specification and its physical relevance. Effect of gain on transient and steady state response. Effect of addition of pole on system performance. Effect of addition of zero on system response.

Module 2: Design of Classical Control System in the time domain (8 hours)

Introduction to compensator. Design of Lag, lead lag-lead compensator in time domain. Feedback and Feed forward compensator design. Feedback compensation. Realization of compensators.

Module 3: Design of Classical Control System in frequency domain (8 hours)

Compensator design in frequency domain to improve steady state and transient response. Feedback and Feed forward compensator design using bode diagram.

Module 4: Design of PID controllers (6 hours)

Design of P, PI, PD and PID controllers in time domain and frequency domain for first, second and third order systems. Control loop with auxiliary feedback – Feed forward control.

Module 5: Control System Design in state space (8 hours)

Review of state space representation. Concept of controllability & observability, effect of pole zero cancellation on the controllability & observability of the system, pole placement design through state feedback. Ackerman's Formula for feedback gain design. Design of Observer. Reduced order observer. Separation Principle.

Module 6: Nonlinearities and its effect on system performance (3 hours)

Various types of non-linearities. Effect of various non-linearities on system performance. Singular points. Phase plot analysis.

Text and Reference Books :

- 1. N. Nise, "Control system Engineering", John Wiley, 2000.
- 2. I. J. Nagrath and M. Gopal, "Control system engineering", Wiley, 2000.
- 3. M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.
- 4. K. Ogata, "Modern Control Engineering", Prentice Hall, 2010.
- 5. B. C. Kuo, "Automatic Control system", Prentice Hall, 1995.
- 6. J. J. D'Azzo and C. H. Houpis, "Linear control system analysis and design (conventional and modern)", McGraw Hill, 1995.
- 7. R.T. Stefani and G.H. Hostetter, "Design of feedback Control Systems", Saunders College Pub, 1994.

.....

PEC-EE18	Advanced Electric Drives	3L:0T:0P	3 credits

At the end of this course, students will demonstrate the ability to

- Understand the operation of power electronic converters and their control strategies.
- Understand the vector control strategies for ac motor drives
- Understand the implementation of the control strategies using digital signal processors.

Module 1: Power Converters for AC drives (10 hours)

PWM control of inverter, selected harmonic elimination, space vector modulation, current control of VSI, three level inverter, Different topologies, SVM for 3 level inverter, Diode rectifier with boost chopper, PWM converter as line side rectifier, current fed inverters with self-commutated devices. Control of CSI, H bridge as a 4-Q drive.

Module 2: Induction motor drives (10 hours)

Different transformations and reference frame theory, modeling of induction machines, voltage fed inverter control-v/f control, vector control, direct torque and flux control(DTC).

Module 3: Synchronous motor drives (6 hours)

Modeling of synchronous machines, open loop v/f control, vector control, direct torque control, CSI fed synchronous motor drives.

Module 4: Permanent magnet motor drives (6 hours)

Introduction to various PM motors, BLDC and PMSM drive configuration, comparison, block diagrams, Speed and torque control in BLDC and PMSM.

Module 5: Switched reluctance motor drives (6 hours)

Evolution of switched reluctance motors, various topologies for SRM drives, comparison, Closed loop speed and torque control of SRM.

Module 6: DSP based motion control (6 hours)

Use of DSPs in motion control, various DSPs available, realization of some basic blocks in DSP for implementation of DSP based motion control.

Text / References:

- 1. B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2003.
- 2. P.C. Krause, O. Wasynczuk and S.D. Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley & Sons, 2013.
- 3. H. A. Taliyat and S. G. Campbell, "DSP based Electromechanical Motion Control", CRC press, 2003.
- 4. R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor Drives", CRC Press, 2009.

Project/ Internship

PROJ-EE01	Project Work –I	0L:0T:6P	3 credits
-----------	-----------------	----------	-----------

The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

1. Survey and study of published literature on the assigned topic;

- 2. Working out a preliminary Approach to the Problem relating to the assigned topic;
- 3. Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- 4. Preparing a Written Report on the Study conducted for presentation to the Department;
- 5. Final Seminar, as oral Presentation before a departmental committee.

.....

PROJ-EE02	Project Work II & Dissertation	0L:0T:16P	8 credits
			0 ci cuito

The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

- 1. In depth study of the topic assigned in the light of the Report prepared under EEP1;
- 2. Review and finalization of the Approach to the Problem relating to the assigned topic;
- 3. Preparing an Action Plan for conducting the investigation, including team work;
- 4. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- 5. Final development of product/process, testing, results, conclusions and future directions;
- 6. Preparing a paper for Conference presentation/Publication in Journals, if possible;
- 7. Preparing a Dissertation in the standard format for being evaluated by the Department.
- 8. Final Seminar Presentation before a Departmental Committee.

PROJ-EE	Summer Industry Internship

The summer internship should give exposure to the practical aspects of the discipline. In addition, the student may also work on a specified task or project which may be assigned to him/her. The outcome of the internship should be presented in the form of a report.

- •During the summer vacation, after the second semester, students are required to be involved in Inter/ Intra institutional activities such as STTP/Workshop/Training/ Technical Festival/ Entrepreneurship.
- •During the summer vacation after 4th/6th Semester, students are ready for industrial experience, therefore they may choose to undergo internship/innovation/ entrepreneurship related activities.